measurement was set 100 Hz upfield of the resonance being analyzed; τ-values ranged from 0.001 to 120 s , and good S / N ratios were achieved within $20-60$ scans.

The long $T 1$ values for 1 prohibited the rapid data collection needed to follow the scrambling process. In order to accelerate relaxation all kinetic NMR measurements were performed with a pulse width of $60 \mu \mathrm{~s}$ and with solutions $0.06 \mathrm{M}_{1}$ in CDCl_{3} containing $0.05 \mathrm{M} \mathrm{Cr}(\mathrm{acac})_{3}$ as a PARR. The presence of the PARR produced only very minor changes in chemical shifts and line widths, and allowed pulse delays to be reduced to 5 s . To ensure that differences in relaxation rates (see $T 1$ values in Table IV were still not biasing the eigenintensities $Q 1$ and $Q 2$, the relative intensities of the three signals at $t=\infty$ were used to obtain numerical factors (ideally $2: 2: 1$ for $\mathrm{N} 1,2: \mathrm{N} 3,4: \mathrm{N} 5$) needed for normalization of the kinetic data. S / N ratios of 60 were obtained within 250 or 450 scans. Over the temperature range $5-30^{\circ} \mathrm{C}$, the decay of $Q 1$ and growth in $Q 2$ could be reliably monitored for at least six half-lives, ie., 9.5 h at $5^{\circ} \mathrm{C}$ and 2.0 h at $30^{\circ} \mathrm{C}$.

Molecular Orbital Calculations. MNDO calculations of charge densities and bond orders in $E N_{5} \mathrm{~S}_{3}$ structures were performed using the MOPAC suite of programs ${ }^{26}$ operating on a SUN/3 workstation. The calculations were performed with full geometry optimization within a C_{s} symmetry constraint.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support and an NSERC postdoctoral fellowship (to R.T.B.).

Appendix

Treatment of Kinetic Data. Combination of the two sets of coupled first-order processes shown in Scheme IV gives rise to the following secular determinant: ${ }^{9}$
(26) (a) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899. (b) QCPE, 1984, No. 455 (MOPAC).
$\left|\begin{array}{lllll}-2\left(k_{\mathrm{c}}+k_{\mathrm{s}}\right)-\lambda & k_{\mathrm{s}} & k_{\mathrm{c}} & 0 & \left(k_{\mathrm{c}}+k_{\mathrm{s}}\right) \\ k_{\mathrm{s}} & -2\left(k_{\mathrm{c}}+k_{\mathrm{s}}\right)-\lambda & 0 & k_{\mathrm{c}} & \left(k_{\mathrm{c}}+k_{\mathrm{s}}\right) \\ k_{\mathrm{c}} & 0 & -2\left(k_{\mathrm{c}}+k_{\mathrm{s}}\right)-\lambda & \left(k_{\mathrm{c}}+2 k_{\mathrm{s}}\right) & 0 \\ 0 & k_{\mathrm{c}} & \left(k_{\mathrm{c}}+2 k_{\mathrm{s}}\right) & -2\left(k_{\mathrm{c}}+k_{\mathrm{s}}\right)-\lambda & 0 \\ \left(k_{\mathrm{c}}+k_{\mathrm{s}}\right) & \left(k_{\mathrm{c}}+k_{\mathrm{s}}\right) & 0 & 0 & -2\left(k_{\mathrm{c}}+k_{\mathrm{s}}\right)-\lambda\end{array}\right|=0$

Solution of the above gives the eigenvalues:

$$
\begin{gathered}
\lambda_{1}=-3 k_{\mathrm{s}} / 2-5 k_{\mathrm{c}} / 2+(1 / 2)\left(5 k_{\mathrm{c}}^{2}+10 k_{\mathrm{c}} k_{\mathrm{s}}+9 k_{\mathrm{s}} 2\right)^{1 / 2} \\
\lambda_{2}=-7 k_{\mathrm{s}} / 2-5 k_{\mathrm{c}} / 2+(1 / 2)\left(5 k_{\mathrm{c}}^{2}+2 k_{\mathrm{c}} k_{\mathrm{s}}+k_{\mathrm{s}}^{2}\right)^{1 / 2} \\
\lambda_{3}=0 \\
\lambda_{4}=-3 k_{\mathrm{s}} / 2-5 k_{\mathrm{c}} / 2-(1 / 2)\left(5 k_{\mathrm{c}}^{2}+10 k_{\mathrm{c}} k_{\mathrm{s}}+9 k_{\mathrm{s}}^{2}\right)^{1 / 2} \\
\lambda_{5}=-7 k_{\mathrm{s}} / 2-5 k_{\mathrm{c}} / 2-(1 / 2)\left(5 k_{\mathrm{c}}^{2}+2 k_{\mathrm{c}} k_{\mathrm{s}}+k_{\mathrm{s}}^{2}\right)^{1 / 2}
\end{gathered}
$$

The last three eigenvalues correspond to eigenintensities that are invariant with time. Numerical and algebraic solutions of the eigenvalue problem for λ_{1} and λ_{2} and the corresponding eigenintensities $Q 1$ and $Q 2$ were obtained using the program maple operating on a SUN/3 workstation. Evaluation of the $t=\infty$ values of experimental intensities (including the $Q 2$ eigenintensity) were performed with the program CONINFIN ${ }^{27}$ (available through Project Seraphim). Linear regression analyses were carried out with Lotus 1-2-3.

Supplementary Material Available: Tables giving raw and normalized intensity versus time data, derivation of eigenintensities $Q 1$ and $Q 2$, first-order rate constants k_{c} and k_{s}, and Eyring analysis of rate constants k_{c} and k_{s} (8 pages). Ordering information is given on any masthead page.
(27) Houser, J. J. J. Chem. Educ. 1982, 59, 776.

Oxygen-17 Nuclear Magnetic Resonance Spectroscopic Studies of Carbonmonoxy Hemoproteins

Hee Cheon Lee and Eric Oldfield*

Contribution from the School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801. Received June 22, 1988

Abstract

We have obtained surprisingly narrow ${ }^{17}$ O nuclear magnetic resonance (NMR) spectra at 8.45 and 11.7 T (corresponding to ${ }^{17} \mathrm{O}$ frequencies of 48.8 and 67.8 MHz) from $\mathrm{C}^{17} \mathrm{O}$ ligands bound to aqueous ferrous myoglobin from Physeter catodon (sperm whale MbCO), from adult human ferrous hemoglobin (HbCOA), and from ferrous hemoglobin from Oryctolagus cuniculus (rabbit HbCO). The ${ }^{17} \mathrm{O}$ NMR signals from these hemoproteins are not only narrower than anticipated, but in the case of sperm whale MbCO the line shape is distinctly non-Lorentzian. We have thus used the dispersion versus absorption (DISPA) plot method to investigate the origin of these unusual line widths and line shapes and demonstrate that they originate from the multiexponential nature of quadrupolar relaxation outside of the "extreme-narrowing" limit ($\omega_{0} \tau_{c}>1$). We find from the DISPA analysis and from spin-lattice relaxation time (T_{1}) measurements that the ${ }^{17} \mathrm{O}$ nuclear quadrupole coupling constant (QCC) for sperm whale MbCO is 0.95 MHz , and the rotational correlation time, τ_{c}, is 14 ns (at $\omega_{0} \tau_{\mathrm{c}}=5.8$). This indicates a rigid heme- CO unit in sperm whale MbCO . Applying the same type of analysis to human HbCO yields ${ }^{17} \mathrm{O} \mathrm{QCC}$ values of 0.9 MHz and τ_{c} of 23 ns (at $\omega_{0} \tau_{c}=10$). In all cases, our results are consistent with an ${ }^{17} \mathrm{O}$ chemical shift anisotropy ($\sigma_{1}-\sigma_{\perp}$) value of about 800 ppm for the CO ligand. These results are important for several reasons: first, they represent the first observation of high-resolution ${ }^{17} \mathrm{O}$ NMR spectra of the CO ligands in metalloproteins. Second, they represent the first experimental demonstration of multiexponential relaxation of a spin $I=5 / 2$ nucleus and its complete analysis with relaxation theory. Third, our results on sperm whale MbCO, taken together with ${ }^{13} \mathrm{C}$ NMR relaxation data, indicate little "internal motion" of the heme-CO group in this system. Our results also demonstrate a linear relationship between the ${ }^{17}$ O NMR chemical shift and ν_{co}, the infrared stretching frequency of the CO ligand, and between the ${ }^{17} \mathrm{O}$ chemical shift and the CO binding affinity of the protein. In addition, the ${ }^{17} \mathrm{O}$ NMR results are also in good agreement with previous time-differential perturbed γ-ray angular correlation (PAC) results on [${ }^{111}$ In]myglobin and -hemoglobin (Marshall, A. G.; Lee, K. M.; Martin, P. W. J. Am. Chem. Soc. 1980, 102, 1460), and some molecular interpretations of the NMR and PAC results are offered.

In the absence of functional interactions, when ligand binding sites may be assumed to be equivalent and independent, different hemoproteins show large differences in their affinity for, and rates of reaction with, the same ligand, even though the overall arrangements of the polypeptide chains are similar. ${ }^{1}$ Available
evidence implies that the reactivity of the heme in hemoproteins is primarily controlled by local effects due to neighboring groups

[^0]on the polypeptide chain. For example, structural analyses reveal that the $\mathrm{Fe}-\mathrm{CO}$ unit in carbonmonoxymyoglobin (MbCO) or carbonmonoxyhemoglobin (HbCO) is bent and/or tilted with respect to the porphyrin ring, due to interactions with the distal amino acid residues, ${ }^{2-5}$ whereas in heme model compounds, free from protein effects, the $\mathrm{Fe}-\mathrm{CO}$ unit is linear and normal to the heme plane. ${ }^{6}$ Thus it has been proposed ${ }^{7,8}$ that one of the primary functions of the amino acids on the distal side of the heme is to provide a sterically crowded environment, which would lower CO affinity by distortion of the preferred, linear, Fe-CO geometry. However, direct and unequivocal evidence concerning all of the factors that affect heme reactivity are still lacking.

Since the oxygen atom of CO bound to hemoproteins is in close contact with the distal residues, ${ }^{17} \mathrm{O}$ NMR appears to be a potentially useful probe for investigating local structural effects on ligand binding affinities of hemoproteins in solution. Surprisingly, however, no attempts appear to have been made to use ${ }^{15} \mathrm{O}$ NMR as a probe of such interactions, presumably because ${ }^{17} \mathrm{O}$ NMR of macromolecules might be expected to give very broad signals because of rapid quadrupolar relaxation of the ${ }^{17} \mathrm{O}$ nucleus due to slow molecular tumbling.

However, NMR of quadrupolar nuclei in macromolecules not only gives, in general, rather broad signals but also exhibits rather complicated relaxation behavior when the rotational correlation time, τ_{c}, is not short compared with the Larmor frequency, ω_{0}. Indeed, it has been shown ${ }^{9-12}$ that decay of both the transverse and the longitudinal magnetization of quadrupolar nuclei in the slow-motion limit ($\omega_{0} \tau_{c} \geq 1$) is not a simple exponential but a sum of ($I+1 / 2$) exponentials for half-integer spin nuclei. For such nuclei, detailed line shape and/or relaxation studies can permit determination of both the nuclear quadrupole coupling constant (QCC) and the rotational correlation time, τ_{c}. Moreover, it is found that one of the exponentials is in fact rather long, yielding narrow line spectra, for $\omega_{0} \tau_{c}>1$ (see below).

Whereas multiexponential behavior for spin $I=3 / 2$ nuclei has been frequently observed, ${ }^{13-16}$ so far no clear-cut example of multiexponential relaxation of $\operatorname{spin} I=5 / 2$ or $I=7 / 2$ nuclei has been reported, even though the differences in the apparent (due to chemical exchange) longitudinal relaxation time, T_{1}, and transverse relaxation time, T_{2}, have been encountered for $I=5 / 2^{17}$ and $I=7 / 2$ nuclei. ${ }^{18} \quad$ We report herein our observation of multiexponential ${ }^{17} \mathrm{O}$ NMR signals from MbCO and HbCO and also report the QCC and τ_{c} of CO bound to several hemoproteins as determined from line shape and relaxation data by using a DISPA (dispersion versus absorption) analysis. ${ }^{19}$ This is, to the
(2) Baldwin, J. M. J. Mol. Biol. 1980, 136, 103.
(3) Heidner, E. J.; Ladner, R. C.; Perutz, M. F. J. Mol. Biol. 1976, 104, 707.
(4) Norvell, J. C.; Nunes, A. C.; Schoenborn, B. P. Science 1975, 190, 568.
(5) Bianconi, A.; Congiu-Castellano, A.; Durham, P. J.; Hasnain, S. S.; Phillips, S. Nature 1985, 318, 685.
(6) Peng, S. M.; Ibers, J. A. J. Am. Chem. Soc. 1976, 98, 8032.
(7) Collman, J. P.; Brauman, J. I;, Halbert, T. R.; Suslick, K. S. Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 3333.
(8) Caughey, W. S. Ann. N.Y. Acad. Sci. 1970, 174, 148.
(9) Bull, T. E.; Forsēn, S.; Turner, D. L. J. Chem. Phys. 1979, 70, 3106.
(10) Hubbard, P. S. J. Chem. Phys. 1970, 53, 985.
(11) Reuben, J.: Luz, Z. J. Phys. Chem. 1976, 80, 1357.
(12) Westlund, P.; Wennerström, H. J. Magn. Reson. 1982, 50, 451.
(13) Gustavsson, H.; Lindman, B.; Bull, T. J. Am. Chem. Soc. 1978, 100, 4655.
(14) Delville, A.; Detellier, C.; Laszlo, P. J. Magn. Reson. 1979, 34, 301.
(15) Marshall, A. G.; Wang, T.-C. L.; Cottrell, C. E.; Werbelow, L. G. J. Am. Chem. Soc. 1982, 104, 7665.
(16) Lerner, L.; Torchia, D. A. J. Am. Chem. Soc. 1986, 108, 4264.
(17) Petersheim, M.; Miner, V. W.; Gerlt, J. A.; Prestegard, J. H. J. Am. Chem. Soc. 1983, 105, 6357.
(18) Andersson, T.; Drakenberg, T.; Forsén, S.; Thulin, E.; Swärd, M. J Am. Chem. Soc. 1982, 104, 576.
(19) Marshall, A. G. In Fourier, Hadamard, and Hilbert Transforms in Chemistry; Marshall, A. G., Ed.; Plenum Press: New York, 1982; pp 99-123.

Figure 1. ${ }^{17} \mathrm{O}$ NMR spectra of ${ }^{17} \mathrm{O}$-labeled carbonmonoxy hemoproteins and a model compound at 11.7 T and $29^{\circ} \mathrm{C}$: (a) 1 mM CO-picket fence porphyrin in benzene (22804 scans, $102-\mathrm{ms}$ recycle time, $40-\mu \mathrm{s} 90^{\circ}$ pulse width, and $50-\mathrm{Hz}$ line broadening); (b) 12 mM sperm whale MbCO in 50 mM phosphate buffer, $\mathrm{pH}=7.0$ (212660 scans, 62 -ms recycle time, $38-\mu \mathrm{S} 90^{\circ}$ and $80-\mu \mathrm{s} 180^{\circ}$ pulse widths, and $100-\mathrm{Hz}$ line broadening); (c) 2.5 mM (in tetramer) human HbCO in 50 mM phosphate buffer, pH $=7.0\left(400000\right.$ scans, 102 -ms recycle time, $38-\mu \mathrm{s} 90^{\circ}$ and $80-\mu \mathrm{s} 180^{\circ}$ pulse widths, and $100-\mathrm{Hz}$ line broadening); (d) 2.5 mM (in tetramer) rabbit HbCO in 50 mM phosphate buffer, $\mathrm{pH}=7.0$ (280000 scans, 202 -ms recycle time, $37-\mu \mathrm{s} 90^{\circ}$ and $78-\mu \mathrm{s} 180^{\circ}$ pulse widths, and $100-\mathrm{Hz}$ line broadening).
best of our knowledge, the first experimental demonstration of multiexponential relaxation of $\operatorname{spin} I=5 / 2$ nuclei, and its complete analysis with relaxation theory, in systems that are not complicated by the effects of chemical exchange, which has been a controversial topic in this area. ${ }^{15,16}$

Of particular importance, we believe, is our observation that the ${ }^{17} \mathrm{O}$ line widths of CO ligands bound to large macromolecules are much narrower than might be expected based on a simple extrapolation of results obtained in the extreme-narrowing case. ${ }^{20}$ For example, we demonstrated previously that the ${ }^{17} \mathrm{O}$ NMR line widths for ${ }^{17} \mathrm{O}_{2}$ in Vaska's compound ($\tau_{\mathrm{c}} \sim 100 \mathrm{ps}, e^{2} q Q / h \sim$ 16.5 MHz) were $\sim 9 \mathrm{kHz}$. A straightforward, but incorrect, calculation of the line width expected for $\mathrm{HbCO}\left(\tau_{c} \sim 30 \mathrm{~ns}\right.$, $\left.e^{2} q Q / h \sim 1.0 \mathrm{MHz}\right)$ then yields, based on the differences in τ_{c} and $e^{2} q Q / h, W \sim 10 \mathrm{kHz}$, a very large value. Experimentally, however, we find an apparent line width of $W \sim 200 \mathrm{~Hz}, 50$ times smaller, due to multiexponential relaxation and the fact that $\omega_{0} \tau_{c}$ >1. This observation of spectral line widths nearly 2 orders of magnitude narrower than might have been anticipated from a simple $\tau(\mathrm{QCC})^{2}$ extrapolation from previous model compound studies ($\omega \tau_{c} \ll 1$) means that a wide new area of NMR studies of CO ligand binding to proteins is now feasible with conventional NMR instrumentation. In this paper we show that both τ_{c} and QCC information for the CO ligand, in addition to its chemical shift and chemical shift anisotropy, may be obtained in a fairly unambiguous manner.

Experimental Section

Sperm whale (Physeter catodon (Pc)) myoglobin (Mb), human adult hemoglobin (Hb), and rabbit (Oryctolagus cuniculus (Oc)) Hb were purchased from Sigma Chemical Co. (St. Louis, MO). $\mathrm{C}^{17} \mathrm{O}\left(36 \%{ }^{17} \mathrm{O}\right)$ was obtained from ICON Services, Inc. (Summit, NJ). The "picket fence porphyrin", $\mathrm{Fe}\left(\alpha, \alpha, \alpha, \alpha-\mathrm{T}_{\text {piv }} \mathrm{PP}\right)(1-\mathrm{MeIm}) \mathrm{CO}$, was prepared by the method described in the literature ${ }^{21}$ from free ($\alpha, \alpha, \alpha, \alpha-\mathrm{T}_{\text {pix }} P P$), purchased from Mid Century Chemicals (Posen, IL). For the preparation of MbCO , ferric Mb was reduced anaerobically with sodium dithionite in a 50 mM phosphate buffer at $\mathrm{pH}=7.0$ and then carbonylated. Small molecules were removed on a Sephadex G-25 (medium) column. Protein
(20) Lee, H. C.; Oldfield, E. J. Magn. Reson. 1986, 69, 367.
(21) Collman, J. P.; Gagne, R. R.; Reed, C. A.; Halbert, T. R.; Lang, G.; Robinson, W. T. J. Am. Chem. Soc. 1975, 97, 1427.

Figure 2. Partially relaxed Fourier transform inversion-recovery ($180^{\circ}-\tau-90^{\circ}$) data set for sperm whale $\mathrm{MbC}^{17} \mathrm{O}$ at 11.7 T (5000 scans, $72-\mathrm{ms}$ recycle time, $38-\mu \mathrm{s} 90^{\circ}$ and $81-\mu \mathrm{s} 180^{\circ}$ pulse widths, and $200-\mathrm{Hz}$ line broadening). The τ values are given on the figure.

Table I. Spectroscopic Properties and Ligand Binding Affinities of ${ }^{17}$ O-Labeled Carbonmonoxy Hemoproteins and a Model System

sample	chem shift $\left(\delta_{i}, \mathrm{ppm}\right)^{a}$	T_{1}, ms	$P_{1 / 2}(\mathrm{CO}),{ }^{b}$ Torr	$\nu_{\mathrm{CO}}{ }^{c}{ }^{c}$ $\mathrm{~cm}^{-1}$
picket fence porphyrin-C ${ }^{17} \mathrm{O}$	376	4	irreversible	1967
sperm whale $\mathrm{MbC}^{17} \mathrm{O}$	366.5	9	0.018	1944
human $\mathrm{HbC}^{17} \mathrm{O} \alpha, \beta$ chains	369	16	0.004^{d}	1951
rabbit $\mathrm{HbC}^{17} \mathrm{O} \beta$ chain	369	19		1951
rabbit $\mathrm{HbC}^{17} \mathrm{O} \alpha$ chain	361	32		1928

${ }^{a}$ Chemical shift in ppm from internal $\mathrm{H}_{2}{ }^{17} \mathrm{O}$ at $29^{\circ} \mathrm{C}$. ${ }^{b}$ Reference
7. ${ }^{c}$ References 7 and $25 .{ }^{d} P_{1 / 2}(\mathrm{CO})$ for the binding of the fourth CO .
solutions were then concentrated in a Model 8050 ultrafiltration cell (Amicon Corp., Danvers, MA) equipped with a suitable Diaflo membrane. The pH was measured at room temperature with a Radiometer PHM 62 meter (Cleveland, OH), and the final pH was adjusted with 1 M NaOH or 1 M HCl . Similar procedures were used for the preparations of human HbCO and rabbit HbCO .
${ }^{17}$ O NMR spectra were obtained at 8.45 and 11.7 T (corresponding to ${ }^{17} \mathrm{O}$ resonance frequencies of 48.8 and 67.8 MHz , respectively) on "home-built" spectrometers, which consist of $8.45-\mathrm{T} 89-\mathrm{mm}$-bore or 11.7-T 52 -mm-bore superconducting solenoids (Oxford Instruments, Osney Mead, U.K.), Nicolet (Madison, WI) Model 1280 data acquisition systems, Amplifier Research (Souderton, PA) Model 200L amplifiers for radio frequency pulse generation, and either a 10 - or a $20-\mathrm{mm}$ multinuclear solution NMR probe (Cryomagnet Systems, Indianapolis, IN). All the spectra were recorded from static samples, using a spin-echo pulse sequence ($90^{\circ}-\tau-180^{\circ}-\tau$-acquire) with 16 step phase cycling. ${ }^{22}$ The 90° pulse widths were between 35 and $40 \mu \mathrm{~s}$, and typical recycle times of between 100 and 300 ms were employed. Chemical shifts were referenced to internal natural-abundance $\mathrm{H}_{2}{ }^{17} \mathrm{O}$ at 0 ppm , using the convention that high-frequency, low-field, paramagnetic, deshielded values are positive (IUPAC δ scale). All experiments were performed at 29 ± 2 ${ }^{\circ} \mathrm{C}$ and at $\mathrm{pH}=7.0$.
${ }^{13} \mathrm{C}$ NMR spectra were obtained at 8.45 T (corresponding to a ${ }^{13} \mathrm{C}$ resonance frequency of 90.5 MHz) on the same "home-built" spectrometer as described above. Spin-lattice relaxation times (T_{1}) were measured on the same sample as used for ${ }^{17}$ O NMR and at the same probe temperature, using the inversion-recovery pulse sequence, together with 4 -W WALTZ-16 proton decoupling. The 90° pulse width was 44μ s.

Results and Discussion

Contrary to our initial expectation, we have observed quite narrow ${ }^{17} \mathrm{O}$ NMR signals from sperm whale $\mathrm{MbC}^{17} \mathrm{O}$, human $\mathrm{HbC}{ }^{17} \mathrm{O}$, and rabbit $\mathrm{HbC}^{17} \mathrm{O}$. Figure 1 shows the ${ }^{17} \mathrm{O}$ NMR spectra of these hemoproteins, together with that of a model compound, CO-picket fence porphyrin. The signal-to-noise ratios are adequate to permit meaningful inversion-recovery T_{1} mea-

[^1]

Figure 3. Plot of the ${ }^{17} \mathrm{O}$ NMR chemical shifts versus infrared ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ stretching frequencies: (1) CO-picket fence porphyrin; (2) human Hb α and β chains and rabbit $\mathrm{Hb} \beta$ chain; (3) sperm whale MbCO ; (4) rabbit $\mathrm{Hb} \alpha$ chains.
surements, and we show in Figure 2 representative partially relaxed Fourier transform ${ }^{17} \mathrm{O}$ NMR spectra for sperm whale $\mathrm{MbC}{ }^{17} \mathrm{O}$. Table I contains a compilation of all of the ${ }^{17} \mathrm{O}$ NMR chemical shift and T_{1} data, together with affinity constant data ${ }^{7}$ and infrared CO stretching frequencies.

A single ${ }^{17} \mathrm{O}$ NMR signal is observed from sperm whale MbCO (Figure lb), while two signals are observed from rabbit HbCO (one for each type of chain) (Figure 1d), as expected. However, only a single signal is observed from human HbCO , in contrast to the observation ${ }^{23}$ that the ${ }^{13} \mathrm{C}$ NMR spectrum of HbCO A exhibits two well-resolved signals. This highlights the only apparent drawback of ${ }^{17} \mathrm{O}$ NMR of $\mathrm{C}^{17} \mathrm{O}$-labeled proteins-that resolution of ${ }^{17} \mathrm{O}$ NMR is less than that of ${ }^{13} \mathrm{C}$ NMR, due primarily to increased ${ }^{17} \mathrm{O}$ line widths.

In order to check on the origins of our ${ }^{17} \mathrm{O}$ NMR resonances, we have titrated the sperm whale MbCO sample with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ to remove the possibility that the broad signal might originate from mobile, free CO "trapped" in the protein matrix. The broad signals gradually and stoichiometrically disappear in proportion to the amount of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ added, which confirms that the broad signal observed represents CO bound to Fe (II) of the hemoprotein. In rabbit HbCO , we assign the peak at 369 ppm to the β chains and the peak at 361 ppm to the α chains. These specific assignments are based on the observation by previous workers ${ }^{23-25}$ that the β chains resemble the α and β chains of human Hb , while the α chains may be preferentially oxidized with oxidants such as $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$. In our oxidation experiments (data not shown) the peak at 361 ppm disappears first when fractional equivalents of $\mathrm{K}_{3} \mathrm{Fe}\left(\mathrm{CN}_{6}\right)$ are added to the protein solution. We have also titrated the ${ }^{17} \mathrm{O}$ NMR spectra of all the hemoproteins studied with 1 M HCl and 1 M NaOH and observe no pH dependence of the ${ }^{17} \mathrm{O}$ chemical shifts between pH 6 and pH 11 (data not shown).

The results of Table I suggest a correlation exists between infrared CO stretching frequencies and ${ }^{17} \mathrm{O}$ NMR chemical shifts for bound CO's, both in the model compound and in the hemoproteins. A plot of the ${ }^{17} \mathrm{O}$ NMR chemical shifts versus (average) IR stretching frequencies is given in Figure 3 and shows an excellent linear relationship, as has been observed previously for transition-metal carbonyls. ${ }^{26,27}$ The ${ }^{17} \mathrm{O}$ NMR chemical shift also appears to correlate with previously measured CO affinity constants, ${ }^{7}$ although the data base here is extremely limited. Nevertheless, it does appear in the picket fence porphyrin, which

[^2]Table II. Experimental and Theoretical Oxygen-17 NMR Relaxation Parameters for $\mathrm{MbC}^{17} \mathrm{O}$

	expt			theory ${ }^{\text {a }}$		
	$\begin{aligned} & T_{1}, \\ & \mathrm{~ms} \end{aligned}$	$\begin{gathered} \hline \text { line width, }{ }^{b} \\ \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \text { area } \\ (t=0), c \% \end{gathered}$	$\begin{aligned} & T_{1}, \\ & \mathrm{~ms} \end{aligned}$	line width, Hz	$\begin{gathered} \text { area } \\ (t=0), \% \end{gathered}$
narrow component broad component	$\begin{aligned} & \mathbf{9} \mathbf{N M}^{d} \end{aligned}$	$\begin{aligned} & 196(96) \\ & 910(810) \end{aligned}$	$\begin{aligned} & \hline 44(60) \\ & 56(40) \end{aligned}$	$\begin{aligned} & 9 \\ & \mathbf{N M}^{d} \end{aligned}$	$\begin{array}{r} 95 \\ 812 \end{array}$	$\begin{aligned} & 36 \\ & 64 \end{aligned}$

${ }^{a}$ Relaxation parameters for pure quadrupolar interaction. ${ }^{9} \omega_{0} \tau_{c}=5.8, \omega_{0}=4.26 \times 10^{8} \mathrm{~s}^{-1}$, and $\mathrm{QCC}=0.95 \mathrm{MHz}$. ${ }^{b}$ The values in parentheses represent the quadrupolar contribution to the line width, as discussed in the text. ${ }^{c}$ The values in parentheses are relative areas at $t=303 \mu \mathrm{~s}$. ${ }^{d} \mathrm{Not}$ measurable.
is free from steric effects due to protein side chains (although, of course, other important steric effects are present), that irreversible CO binding correlates with the most downfield-shifted ${ }^{17} \mathrm{O}$ resonance signal, while, on the other hand, the rabbit $\mathrm{Hb} \alpha$ chain, which is the most unstable, ${ }^{25}$ yields the most upfield-shifted signal. Such differences in ${ }^{17}$ O NMR chemical shift behavior may be attributable to the degree of distal amino acid interaction with the heme-bound CO .

The ${ }^{17} \mathrm{O}$ NMR signals from MbCO and HbCO not only are narrower than might have been anticipated but are also nonLorentzian in shape, as can be seen in Figure 1. Furthermore, the measured T_{1} is much greater than the T_{2} deduced from the apparent line width. This suggests that the non-Lorentzian ${ }^{17} \mathrm{O}$ NMR signals originate from quadrupolar relaxation in the slowmotion limit ($\omega_{0} \tau_{c}>1$).

For an $I=5 / 2$ nucleus, it has been shown previously ${ }^{10}$ that the decay of both longitudinal and transverse magnetization is a weighted sum of three exponentials in the slow-motion limit and can be written as

$$
\begin{align*}
\Delta M_{1}(t) & =\Delta M_{1}(0) \sum_{i=1}^{3} C_{1, i} \exp \left(-R_{1, i} t\right) \tag{1}\\
M_{2}(t) & =M_{2}(0) \sum_{i=1}^{3} C_{2, i} \exp \left(-R_{2, i} t\right) \tag{2}
\end{align*}
$$

where

$$
\sum_{i=1}^{3} C_{1, i}=\sum_{i=1}^{3} C_{2, i}=1
$$

and the subscripts 1 and 2 denote longitudinal and transverse relaxation, respectively. Since the preexponential factors, as well as the exponential factors, in eq 1 and 2 depend on parameters such as $\omega_{0}, \tau_{\mathrm{c}}$, etc., it is not possible to obtain analytical solutions of the relaxation equations, and they have to be solved numerically for each $\omega_{0} \tau_{c}$ value. Such numerical calculations for $I=5 / 2$ nuclei have been performed by Bull et al. ${ }^{9}$

The decay of the longitudinal magnetization, however, can be approximated by a single exponential for correlation times such that $\omega_{0} \tau_{c} \leq 10$, since $C_{11}>0.93$ for $\omega_{0} \tau_{c} \leq 10$. For such a "nearly exponential" relaxation, the longitudinal relaxation rate can be written ${ }^{18,28}$ as

$$
\begin{align*}
& R_{1}=\frac{1}{T_{1}}= \\
& \quad \frac{3 \pi^{2}}{50} \frac{2 I+3}{\Gamma^{2}(2 I-1)}\left(\frac{e^{2} q Q}{h}\right)^{2}\left[\frac{\tau_{\mathrm{c}}}{1+\omega_{0}{ }^{2} \tau_{\mathrm{c}}{ }^{2}}+\frac{4 \tau_{\mathrm{c}}}{1+4 \omega_{0}{ }^{2} \tau_{\mathrm{c}}{ }^{2}}\right] \tag{3}
\end{align*}
$$

where the symbols have their usual meanings. Thus we can obtain well-defined T_{1} values using inversion-recovery techniques, even though the line shapes are still non-Lorentzian.
We have performed inversion-recovery T_{1} measurements for sperm whale MbCO at two different magnetic field strengths in order to clarify relaxation mechanisms and have obtained T_{1} values of 9 ms at 11.7 T and 5.3 ms at 8.45 T . Since the experimental T_{1} ratio of 1.7 at the two fields is very close to the theoretical value of 1.9 (from eq 3 when $\omega_{0} \tau_{c}>1$), we can thus confirm that the quadrupolar interaction is the dominant spin-lattice relaxation mechanism for $\mathrm{C}^{17} \mathrm{O}$ in aqueous $\mathrm{MbC}^{17} \mathrm{O}$ solutions.
(28) Halle, B.; Wennerström, H. J. Magn. Reson. 1981, 44, 89.

Figure 4. DISPA plots for sperm whale $\mathrm{MbC}^{17} \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$: (a) experimental DISPA plot for the $\mathrm{H}_{2}{ }^{17} \mathrm{O}$ signal in the $\mathrm{MbC}^{17} \mathrm{O}$ sample; (b) experimental DISPA plot for sperm whale $\mathrm{MbC}^{17} \mathrm{O}$; (c) simulated DISPA plot for sperm whale $\mathrm{MbC}^{17} \mathrm{O}$. The experimental DISPA plot in (b) was constructed from the spectrum in Figure 1b, which had been Fourier transformed at $t=303 \mu \mathrm{~s}$ from $t=0$.

In order to further investigate the origins of the observed line shapes of the ${ }^{17} \mathrm{O}$ NMR signals from MbCO and HbCO , we have used the dispersion versus absorption (DISPA) method to monitor slight deviations from Lorentzian behavior. Figure 4a shows the experimental DISPA plot for the $\mathrm{H}_{2}{ }^{17} \mathrm{O}$ signal in our MbCO sample. The circularity of the DISPA plot indicates a near-perfect Lorentzian line shape. Thus any deviations from the DISPA reference circle (diameter equal to maximum absorption peak height) for other signals in the same sample must almost certainly reflect the intrinsic properties of the line shape rather than any experimental artifacts.

Figure 4 b shows the experimental DISPA plot for the $\mathrm{C}^{17} \mathrm{O}$ ligands in sperm whale $\mathrm{MbC}^{17} \mathrm{O}$. According to Marshall's analysis, ${ }^{19}$ there is only one possible mechanism that can displace the DISPA plot inward and to the left of its reference circle with a magnitude as large as in Figure 4 b . That is the case of a superposition of several Lorentzians having the same resonance frequency but different line widths, as shown for example in Figure 5. The experimental DISPA plot can be simulated by varying the areas and line widths of each component independently, but keeping the same resonance frequency. We have found that an excellent DISPA simulation can be obtained by using two components, rather than three, as shown in Figure 4c, and the line widths and relative areas of each component for MbCO are listed in Table II. Since the experimental DISPA plot was constructed from a spectrum that had been Fourier transformed at $t=303$ $\mu \mathrm{s}$ from $t=0$ (due to the instrumental dead time, finite 180° pulse duration, and the delays (τ) between and after pulses), the relative areas at $t=0$ (the relative amplitude $C_{2, i}$ in eq 2) have been extrapolated from those at $t=303 \mu \mathrm{~s}$. Attempts at simulating the DISPA plot with three components did not yield any improvement. We have also simulated the ${ }^{17} \mathrm{O}$ NMR spectrum of $\mathrm{MbC}{ }^{17} \mathrm{O}$ independently, using two Lorentzian peaks, as shown in Figure 5. The line widths and relative areas of each component are in excellent agreement with those obtained from the DISPA plot. Note, however, that relaxation theory ${ }^{10}$ and numerical calculations ${ }^{9}$ for the transverse relaxation rates of $\operatorname{spin} I=5 / 2$

Figure 5. Line shapes for sperm whale MbCO at 11.7 T : (a) experimental ${ }^{17}$ O NMR spectral line shape from Figure $1 b$; (b) simulated line shape; (c) Lorentzian peaks used in simulation in (b) having line widths of 196 Hz for the narrow component and 910 Hz for the broad component. Area ratio $=60 / 40$ (narrow $/$ broad). The experimental spectrum was obtained by Fourier transforming the FID at $t=303 \mu \mathrm{~s}$ from $t=$ 0.
nuclei do predict three components, a narrow one, an intermediate one, and a broad one. The line width of the narrow component decreases as τ_{c} increases in the slow-motion limit, while those of the intermediate and broad components increase. However, Lerner and Torchia have shown ${ }^{16}$ that, as expected, the line width of the narrow component does not necessarily decrease as τ_{c} increases if the chemical shift anisotropy (CSA) is large. We have also observed such behavior from temperature and magnetic field strength dependence studies of the ${ }^{17} \mathrm{O}$ NMR spectra of our MbC^{19} O samples (data not shown). This suggests that the CSA contribution to the line width is not small. Indeed, solid-state "magic-angle" sample-spinning ${ }^{17} \mathrm{O}$ NMR studies of CO-picket fence porphyrin show ${ }^{29}$ that the ${ }^{17} \mathrm{O}$ CSA of CO bound to Fe (II) is very large (ca .800 ppm), while the ${ }^{17} \mathrm{O} \mathrm{QCC}$ is very small (ca. 1 MHz). We thus assign the narrow and broad components obtained from the DISPA plot to the narrow and intermediate ones predicted by relaxation theory. The third and broadest component predicted is presumably not observable because it relaxes too rapidly.

We now have three experimental relaxation parameters: T_{1} of the narrow component, and the line widths of both the narrow and broad components, which are sufficient to determine the two unknowns, the ${ }^{17} \mathrm{O}$ QCC of CO bound to Mb and its τ_{c}. However, we have found that the three experimental parameters do not match simultaneously with the theoretical ones at any combination of QCC and τ_{c}, since there are additional nonquadrupolar interactions, such as the chemical shift anisotropy and various instrumental contributions to the line width, which need to be taken into consideration. We can investigate these factors as follows. First, we can estimate the CSA contribution to the line width. The relaxation rates for the CSA mechanism are given by

$$
\begin{gather*}
\frac{1}{T_{1}}=\frac{1}{15} \gamma^{2} H_{0}^{2}\left(\sigma_{\|}-\delta_{\perp}\right)^{2}\left\{\frac{2 \tau_{c}}{1+\omega^{2} \tau_{c}^{2}}\right\} \tag{4}\\
\frac{1}{T_{2}}=\frac{1}{90} \gamma^{2} H_{0}^{2}\left(\sigma_{\|}-\sigma_{\perp}\right)^{2}\left\{\frac{6 \tau_{c}}{1+\omega^{2} \tau_{c}{ }^{2}}+8 \tau_{c}\right\} \tag{5}
\end{gather*}
$$

where the symbols have their usual meanings. For $\tau_{c} \approx 14 \mathrm{~ns}$ and $\left|\sigma_{\|}-\sigma_{\perp}\right|=800 \mathrm{ppm}$ (the CO-picket fence porphyrin value ${ }^{29}$) we find a CSA contribution to the line width of $\sim 50 \mathrm{~Hz}$. The CSA contribution to T_{1} is negligible (170 ms). We have also measured T_{1} of the water in the MbCO sample and obtain $T_{1}=4.9 \mathrm{~ms}$. Since the measured line width of the water signal is 95 Hz , this

[^3]

Figure 6. Partially relaxed Fourier transform inversion-recovery ($180^{\circ}-\tau-90^{\circ}$) data sets for the polypeptide C^{a} and heme meso carbons in sperm whale MbCO from the same sample as used for ${ }^{17} \mathrm{O}$ NMR in Figure lb. The τ values are given on the figure. (a) C^{α} carbons (500 scans, $3.3-\mathrm{s}$ recycle time, $44-\mu \mathrm{s} 90^{\circ}$ and $90-\mu \mathrm{s} 180^{\circ}$ pulse widths, $20-\mathrm{Hz}$ line broadening, 4-W WALTZ-16 ${ }^{1} \mathrm{H}$ decoupling); (b) heme meso carbons (3000 scans, $3.3-\mathrm{s}$ recycle time, $44-\mu \mathrm{s} 90^{\circ}$ and $90-\mu \mathrm{s} 180^{\circ}$ pulse widths, $30-\mathrm{Hz}$ line broadening, $4-\mathrm{W}$ WALTZ- $16{ }^{1} \mathrm{H}$ decoupling).
indicates a magnetic inhomogeneity contribution of $\sim 30 \mathrm{~Hz}$, with the assumption that $T_{1}=T_{2}$ for water. We note that the assumption of $T_{1}=T_{2}$ is not valid for pure water at neutral pH , due to ${ }^{1} \mathrm{H}-{ }^{17} \mathrm{O}$ scalar coupling effects. ${ }^{30}$ However, such line broadening appears to be minimal for our concentrated protein solutions, as indicated by the near-perfect Lorentzian line shape of the $\mathrm{H}_{2}{ }^{1{ }^{1}} \mathrm{O}$ signal in the protein sample, presumably due to a significantly decreased proton lifetime (caused either by buffer ${ }^{31}$ or solvent-accessible functional groups in the protein ${ }^{32}$). Thus our results indicate a nonquadrupolar contribution to the ${ }^{17} \mathrm{O}$ line width of CO^{17} in $\mathrm{MbC}^{17} \mathrm{O}$ of about 80 Hz .

What we find experimentally (Table II) is that a $100-\mathrm{Hz}$ correction, rather than 80 Hz , is required in order to obtain a unique solution for τ_{c} and QCC, which predicts all three measured parameters-the T_{1} and line widths of both DISPA components. Although the correction is a substantial fraction of the experimentally observed line width, we believe it is clearly within typical experimental error (on both T_{1} and T_{2}), the unaccounted for $20-\mathrm{Hz}$ line width being only 10% of the measured width of the narrow component, and could easily be due to a slightly larger CSA alone in MbCO, which is quite possible in view of increased π backbonding, due to the bend and/or tilted $\mathrm{Fe}-\mathrm{CO}$ unit. ${ }^{33}$ With this minor caveat then, we obtain a unique solution of a QCC of 0.95 MHz and $\tau_{\mathrm{c}}=14 \mathrm{~ns}$ for $\mathrm{MbC}^{17} \mathrm{O}$ (at $\omega_{0} \tau_{\mathrm{c}}=5.8$). The ${ }^{17} \mathrm{O}$ QCC obtained is comparable with those observed in mononuclear transition-metal carbonyls (ca, 1 MHz). ${ }^{29,34}$ Furthermore, the τ_{c} value of 14 ns is very close to the values of 13 and 12 ns obtained from ${ }^{13} \mathrm{C}\left(T_{1}\right)$ measurements of the C^{α} carbon in the protein backbone and the (meso) methine carbon in the heme group,

[^4]Table III. Experimental and Theoretical Oxygen-17 NMR Relaxation Parameters for Human $\mathrm{HbC}^{17} \mathrm{O}$

	expt			theory ${ }^{\text {a }}$		
	$\begin{aligned} & T_{1}, \\ & \mathrm{~ms} \end{aligned}$	$\begin{gathered} \text { line width, }{ }^{b} \\ \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \text { area } \\ (t=0), \% \end{gathered}$	$\begin{aligned} & T_{1}, \\ & \mathrm{~ms} \end{aligned}$	line width, Hz	$\begin{gathered} \text { area } \\ (t=0), \% \end{gathered}$
narrow component	16	196 (56)	44	16	50	35
broad component	$\mathrm{NM}^{\text {c }}$	1200 (1060)	56	$\mathrm{NM}^{\text {c }}$	1067	65

${ }^{a}$ Relaxation parameters for pure quadrupolar interaction. ${ }^{9} \omega_{0} \tau_{c}=10, \omega_{0}=4.26 \times 10^{8} \mathrm{~s}^{-1}$, and $\mathrm{QCC}=0.9 \mathrm{MHz}$. ${ }^{b}$ The values in parentheses represent the purely quadrupolar contributions to the line width, as discussed in the text. ${ }^{〔}$ Not measurable.

Figure 7. Experimental and simulated DISPA plots for human $\mathrm{HbC}^{17} \mathrm{O}$: (a) experimental DISPA plot; (b) simulated DISPA plot. The DISPA plot in (a) was constructed from the spectrum in Figure 1c, which had been Fourier transformed at $t=303 \mu \mathrm{~s}$ from $t=0$.
respectively, as shown in Figure 6, determinations that were made on the same sample as used for ${ }^{17}$ O NMR and at the same probe temperature. These τ_{c} values are to be compared with our previous result ${ }^{35}$ of $\tau_{\mathrm{c}}=22 \mathrm{~ns}$ for ${ }^{57} \mathrm{Fe}$ in MbCO , obtained at a slightly higher concentration and lower temperature. The close similarities of τ_{c} values for the peptide C^{α}, heme meso carbon, and heme CO oxygen clearly imply little internal motion of the heme, or its CO ligand, or at least that all motions are likely very small amplitude librations.

We have also applied a similar line shape analysis to the ${ }^{17} \mathrm{O}$ NMR spectrum of human HbCO . The experimental and simulated DISPA plots for HbCO are shown in Figure 7, and the line widths and the relative areas of the two Lorentzian peaks used are listed in Table 1II. While there could be small chemical shift differences between the α and β chains of human HbCO , several factors prompted us to use the same procedures as with MbCO . First, we did not see any indication of such a shift difference. Second, Marshall et al. ${ }^{36}$ have shown that a distribution in peak position not only displaces the DISPA plot outward from its reference circle but also dominates over a distribution in line width in determining the DISPA displacement. However, we do not observe any evidence of such a distribution in peak position from the experimental DISPA plot for HbCO . Third, the apparent line width of the ${ }^{17} \mathrm{O}$ NMR signal from human HbCO is almost the same as (or even less than) that of the β chain of rabbit HbCO (which gives approximately the same ${ }^{17} \mathrm{O}$ NMR chemical shift as human HbCO). Taken together, we conclude that the oxygen environments of CO bound to both the α and β chains of human HbCO are very similar and that any differences in ${ }^{17} \mathrm{O}$ NMR chemical shift between them are unmeasurable.

[^5]The experimental and theoretical relaxation parameters determined for HbCO A are listed in Table III and correspond to a QCC of 0.9 MHz and $\tau_{\mathrm{c}}=23 \mathrm{~ns}$ (at $\omega_{0} \tau_{\mathrm{c}}=10$). The line width subtraction of 140 Hz is large (for the narrow component) but is not unexpected, since Hb is 4 times larger than Mb , and the CSA contribution to the line width becomes larger as τ_{c} increases. Indeed, a CSA contribution of 80 Hz is obtained at $\tau_{c}=23 \mathrm{~ns}$ (from eq 5), using the picket fence porphyrin CSA of 800 ppm , and this together with a $30-\mathrm{Hz}$ magnetic inhomogeneity contribution accounts for almost 80% of the line width correction. The resultant QCC and τ_{c} values are again in excellent agreement with those derived from other studies. ${ }^{29,34,37,38}$

Rabbit HbCO displays two well-resolved ${ }^{19} \mathrm{O}$ NMR signals for the α and β chains (Figure 1d). The signal from the β chain appears slightly downfield from that of human HbCO , whereas the signal from the α chain is shifted considerably upfield. These shifts are opposite to those found with ${ }^{13} \mathrm{C}$ NMR, ${ }^{23}$ a not unusual occurrence with (other) substituted transition-metal carbonyls.

Unfortunately, the presence of two well-resolved peaks imposes some difficulties in applying the DISPA analysis, since now eight parameters have to be varied independently instead of four. What is clear, however, is that there are large structural differences between the α and β chains, as reflected in the $\mathrm{C}^{17} \mathrm{O} T_{1}$ values of 32 and 19 ms , respectively. If we assume a QCC value of 0.95 MHz , as with HbCO A, then use of eq 3 yields τ_{c} values of 51 and 30 ns , respectively, for the α and β CO ligands. However, if the α QCC were only 0.64 MHz , then the observed T_{1} for the α chains could be accommodated by a $\tau_{c}=23 \mathrm{~ns}$, the same as in HbCO A. Given the information currently available, we cannot differentiate between these two possibilities. However, since T_{1} of the CO ligand of the rabbit $\mathrm{Hb} \alpha$ chains is twice as large as that of human HbCO , while the apparent line width, which is dominated by the narrow component, is almost the same as that of human HbCO A , the $0.95-\mathrm{MHz} \mathrm{QCC}$ value seems more likely. If the longer T_{1} relaxation time of rabbit $\mathrm{Hb} \alpha$ chains resulted from the smaller ${ }^{17} \mathrm{O}$ QCC with the same τ_{c} as human Hb , the apparent line width of the ${ }^{17} \mathrm{CO}$ ligand of rabbit $\mathrm{Hb} \alpha$ chains should be much smaller than that of human Hb , unless, of course, the CSA becomes larger and compensates for the line width decrease from the smaller ${ }^{17} \mathrm{O}$ QCC. The situation for rabbit HbCO is clearly complex and at present does not seem resolvable.

Conclusions

Our results yield the rotational correlation times of the CO ligands bound to various hemoproteins and thus allows us to investigate the motional aspects of CO in the heme pocket. In this context it is of interest to note the results of Marshall et al. ${ }^{38}$, who have suggested significantly more motion for the metalloporphyrin in Hb than in Mb . On the basis of time-differential perturbed γ-ray angular correlation (PAC), the rotational correlation time for indium-111 in apohemoglobin with [${ }^{111}$ In]protoporphyrin IX is 23 ns , which is the same as our value for human $\mathrm{HbCO} A$. For similarly reconstituted $\mathrm{Mb},{ }^{39}$ PAC measurements yield $\tau_{c}=16 \mathrm{~ns}$. Since the PAC ratio, $\tau_{c}(\mathrm{Hb}) / \tau_{c}(\mathrm{Mb})$ $=1.4$, is much less than the rigid-sphere ratio, $\tau_{c}(\mathrm{Hb}) / \tau_{c}(\mathrm{Mb})$ $=4.0$, expected for both macromolecules tumbling as a whole, Marshall et al. have suggested that the metalloporphyrin exhibits

[^6]significantly more internal motional freedom in Hb than in Mb . Our results show a similar ratio, $\tau_{\mathrm{c}}(\mathrm{Hb}) / \tau_{\mathrm{c}}(\mathrm{Mb})=1.6$, very close to the PAC ratio of 1.4 , supporting Marshall's hypothesis. This hypothesis of more motional freedom in HbCO A is significant in that it could originate from a more open heme pocket and result in a less hindered $\mathrm{Fe}-\mathrm{CO}$ structure and higher CO binding affinity. Indeed, the CO binding affinity of human Hb in the R quaternary state is 4 times greater than that of Mb .' (Note that the ${ }^{17} \mathrm{O}$ NMR is probing the R conformation of Hb .) A recent structural analysis ${ }^{5}$ also reveals a bent $\mathrm{Fe}-\mathrm{CO}$ structure, where the bend angles are 165° and 150° for human HbCO and MbCO , respectively, which is consistent with our result of a less hindered HbCO structure.
Our results also provides some evidence on the role of the protein in regulating the CO ligand binding affinities of hemoproteins, especially in solution. We believe an important result emerging from this work is that the size of the heme pocket determines the ligand binding affinities, at least for the CO ligand, of hemoproteins. All of the proteins studied exhibit basically rigid $\mathrm{Fe}-\mathrm{CO}$ units; however, the motional freedom of the $\mathrm{Fe}-\mathrm{CO}$ units is different for the different hemoproteins. Thus the hemoproteins with the more open heme pocket provide more room for the CO
ligand and/or the heme-CO unit, so they exhibit a less hindered $\mathrm{Fe}-\mathrm{CO}$ structure (X -ray correlation) and show higher CO binding affinities (Table I).

These results can be summarized as follows: Picket fence porphyrin: $\delta_{i}=376, \nu_{\mathrm{CO}}=1967 \mathrm{~cm}^{-1}$, linear $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$, unhindered "pocket", irreversible CO binding. $\mathrm{HbCO} A \alpha, \beta$ chains (and rabbit HbCO β chains): $\delta_{i}=369, \nu_{\mathrm{CO}}=1951 \mathrm{~cm}^{-1}, 165^{\circ} \mathrm{Fe}-\mathrm{C}-\mathrm{O}$ bond angle, relatively mobile CO ligand, 0.004 Torr $P_{1 / 2}(\mathrm{CO})$. Sperm whale $\mathrm{MbCO}: \delta_{i}=366.5, \nu_{\mathrm{CO}}=1944 \mathrm{~cm}^{-1}, 150^{\circ} \mathrm{Fe}-\mathrm{C}-\mathrm{O}$ bond angle, hindered/immobile CO "pocket", 0.018 Torr $P_{1 / 2}(\mathrm{CO})$. Rabbit $\mathrm{HbCO} \alpha$ chain: $\delta_{\mathrm{i}}=361, \nu_{\mathrm{CO}}=1928 \mathrm{~cm}^{-1}$, rigid CO "pocket", weak CO bonding (in O_{2}-exchange experiments).

Thus stronger ligand bonding appears to correlate with a more deshielded chemical shift, a higher frequency IR CO stretch frequency, and a more linear $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ bond angle (where determined), due in large part, we believe, to the packing constraints imposed by the protein (or porphyrin) environment - the larger the constraints, the weaker the bonding, due to deviations from a linear $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ bond.

Acknowledgment. This work was supported in part by the U.S. National Institutes of Health (Grant HL-19481).

Resonance Raman Spectra of Nitridoiron(V) Porphyrin Intermediates Produced by Laser Photolysis

Wolf-Dieter Wagner and Kazuo Nakamoto*
Contribution from the Department of Chemistry, Todd Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53233. Received August 22, 1988

Abstract

Nitridoiron(V) porphyrins, NFeOEP (OEP, octaethylporphinato anion), NFeTPP (TPP, tetraphenylporphinato anion), and NFeTMP (TMP, tetramesitylporphinato anion), were produced by laser irradiation of thin films of the corresponding azido complexes at $\sim 30 \mathrm{~K}$. Formation of the nitrido complexes was detected by the appearance of the $\nu(\mathrm{Fe} \equiv \mathrm{N})$ (ν, stretching vibration) at $876 \mathrm{~cm}^{-1}$ for the OEP and TPP complexes and at $873 \mathrm{~cm}^{-1}$ for the TMP complex in resonance Raman (RR) spectra. These assignments were confirmed by observed frequency shifts due to ${ }^{56} \mathrm{Fe} /{ }^{54} \mathrm{Fe}$ and ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ isotopic substitutions. Frequencies of structure-sensitive bands known for OEP and TPP complexes suggest the $\mathrm{Fe}(\mathrm{V})$ state for the nitrido complex and rule out the possibility of π-cation-radical formation. Although the spin state cannot be determined definitively by vibrational spectroscopy, the relatively small $\mathrm{Fe} \equiv \mathrm{N}$ stretching force constant ($5.07 \mathrm{mdyn} / \AA$) favors the high-spin $\left(\mathrm{d}_{x y}\right)^{1}\left(\mathrm{~d}_{x z}\right)^{1}\left(\mathrm{~d}_{y z}\right)^{1}$ configuration that was found for isoelectronic oxomanganese(IV) porphyrins. In the case of the OEP complex, RR spectroscopy provides evidence for a reaction scheme in which NFe ${ }^{\mathrm{V}} \mathrm{OEP}$ is first formed by laser photolysis of the $\mathrm{N}_{3} \mathrm{Fe}^{111} \mathrm{OEP}$ complex due to low-power irradiation ($1-60 \mathrm{~mW}$ in the $406.7-514.5$-nm range) and subsequently converted to the μ-nitrido dimer $(\mathrm{FeOEP})_{2} \mathrm{~N}$ by local heating, which occurred when high laser power (220 mW at 413.1 nm) was applied to the sample. This dimer exhibits the symmetric $\mathrm{Fe}-\mathrm{N}-\mathrm{Fe}$ stretching band at $438 \mathrm{~cm}^{-1}$, which shows expected shifts upon ${ }^{36} \mathrm{Fe} /{ }^{54} \mathrm{Fe}$ and ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ substitutions. Formation of the μ-nitrido dimer is also confirmed by the positions of the structure-sensitive bands in the high-frequency region. The above reaction scheme resembles the autoxidation process of oxyiron porphyrins at low temperature which yields ferrylporphyrins as the intermediate and the μ-oxo dimer as the final product at room temperature.

Extensive research in the past decades has revealed that nature relies on high-valent metalloporphyrins in a number of enzymedirected processes of biological systems. ${ }^{1,2}$ For example, oxygenation reactions catalyzed by cytochrome $\mathrm{P}-450^{3-5}$ or horseradish peroxidase (HRP) ${ }^{6,7}$ involve porphyrin intermediates that contain oxidation states higher than $\mathrm{Fe}(1 \mathrm{II})$. It is generally accepted that the active site of these intermediates is a ferryl moiety ($\mathrm{Fe}^{1 \mathrm{~V}}=\mathrm{O}$).

[^7]Interestingly, the first observation of the ferryl stretching vibration $\left[\nu(\mathrm{Fe}=\mathrm{O}), 852 \mathrm{~cm}^{-1}\right]$ was made for a model compound, $\mathrm{O}=$ FeTPP (TPP, tetraphenylporphinato anion) ${ }^{8,9}$ by using resonance Raman (RR) spectroscopy. Subsequently, spectroscopic evidence of ferryl formation was obtained via observation of the $\nu(\mathrm{Fe}=\mathrm{O})$ at $779 \mathrm{~cm}^{-1}$ for HRP-II ${ }^{10,11}$ and at $797 \mathrm{~cm}^{-1}$ for myoglobin. ${ }^{12}$ Other high-valent iron porphyrins reported thus far include nitrogen ${ }^{13}$ and carbon-bridged ${ }^{14}$ dimers which have been proved to

[^8]
[^0]: (1) Antonini, E.; Brunori, M. In Hemoglobin and Myoglobin in Their Reactions with Ligands; American Elsevier: New York, 1971.

[^1]: (22) Kunwar, A. C.; Turner, G. L.; Oldfield, E. J. Magn. Reson. 1986, 69, 124.

[^2]: (23) Moon, R. B.; Richards, J. H. Biochemistry 1974, 13, 3437.
 (24) Matwiyoff, N. A.; Vergamini, P. J.; Needham, T. E.; Gregg, C. T.; Volpe, J. A.; Caughey, W. S. J. Am. Chem. Soc. 1973, 95, 4429.
 (25) Satterlee, J. D.; Teintze, M.; Richards, J. H. Biochemistry 1978, 17, 1456.
 (26) Gray, G. M.; Kraihanzel, C. S. J. Organomet. Chem. 1983, 241, 201.
 (27) Cozak, D.; Butler, I. S.; Hickey, J. P.; Todd, L. J. J. Magn. Reson. 1979, 33, 149.

[^3]: (29) Lee, H. C.; Oldfield, E., unpublished results.

[^4]: (30) Meiboom, S. J. Chem. Phys. 1961, 34, 375.
 (31) Noack, F. Prog. NMR Spectrosc. 1987, 18, 171.
 (32) Rose, K. D.; Bryant, R. G. J. Am. Chem. Soc. 1980, 102, 21.
 (33) Li, X. Y.; Spiro, T. G. J. Am. Chem. Soc. 1988, 110, 6024.
 (34) Oldfield, E.; Keniry, M. A.; Shinoda, S.; Schramm, S.; Brown, T. L.; Gutowsky, H. S. J. Chem. Soc., Chem. Commun. 1985, 791.

[^5]: (35) Lee, H. C.; Gard, J. K.; Brown, T. L.; Oldfield, E. J. Am. Chem. Soc. 1985, 107, 4087.
 (36) Marshall, A. G.; Bruce, R. E. J. Magn. Reson. 1980, 39, 47.

[^6]: (37) Stryer, L. J. Mol. Biol. 1965, 13, 482.
 (38) Marshall, A. G.; Lee, K. M.; Martin, P. W. J. Chem. Phys. 1983, 78, 1528.
 (39) Marshall, A. G.; Lee, K. M.; Martin, P. W. J. Am. Chem. Soc. 1980, 102, 1460.

[^7]: (1) Hewson, W. D.; Hager, L. P. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1979; Vol. 7, pp 295-332.
 (2) Griffin, B. W.; Peterson, J. A.; Eastbook, R. W. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1979; Vol. 4, pp 179-256.
 (3) Dawson, J. H.; Eble, K. S. Cytochrome P-450: Heme Iron Coordination Structure and Mechanisms of Action; Academic Press: New York, 1986; Vol. 4, pp 1-64.
 (4) Lewis, D. F. V. Drug Metab. Rev. 1986, 17, 1-66.
 (5) Alexander, L. S.; Goff, H. M. J. Chem. Educ. 1982, 59, 179-182.
 (6) Harami, T; Maeda, Y.; Morita, Y.; Trautwein, A.; Gonser, U. J. Chem. Phys. 1977, 67, 1164-1169.
 (7) Hanson, L. K.; Chang, C. K.; Davis, M. S.; Fajer, J. J. Am. Chem. Soc. 1981, 103, 663-670.

[^8]: (8) Bajdor, K.; Nakamoto, K. J. Am. Chem. Soc. 1984, 106, 3045-3046.
 (9) Proniewicz, L. M.; Bajdor, K.; Nakamoto, K. J. Phys. Chem. 1986, 90, 1760-1766.
 (10) Sitter, A. J.; Reczek, C. M.; Terner, J. J. Biol. Chem. 1985, 260, 7515-7522.
 (11) Hashimoto, S.; Tatsuno, Y.; Kitagawa, T. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 2417-2421.
 (12) Sitter, A. J.; Reczek, C. M.; Terner, J. Biochim. Biophys. Acla 1985, 828, 229-235.
 (13) Summerville, D. A.; Cohen, I. A. J. Am. Chem. Soc. 1976, 98 , 1747-1752.

